
mltype

Jan Krepl

Nov 10, 2020

CONTENTS:

1 Installation 3
1.1 Extra dependencies . 3

2 Command Line Interface 5
2.1 file . 6
2.2 ls . 7
2.3 random . 7
2.4 raw . 8
2.5 replay . 9
2.6 sample . 10
2.7 train . 11

3 Examples 15
3.1 Competing against yourself . 15

4 Changelog 17
4.1 v0.1.1 . 17
4.2 v0.1 . 17

5 mltype package 19
5.1 Submodules . 19
5.2 mltype.base module . 19
5.3 mltype.cli module . 21
5.4 mltype.data module . 21
5.5 mltype.interactive module . 21
5.6 mltype.ml module . 24
5.7 mltype.stats module . 29
5.8 mltype.utils module . 29
5.9 Module contents . 30

Python Module Index 31

Index 33

i

ii

mltype

mltype is a terminal application for improving typing speed and accuracy. It does so with a tiny bit of deep learning.

CONTENTS: 1

mltype

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

The simplest way to install mltype is via PyPI

pip install mltype

To get the latest version or potentially help with developlment, clone the github repository

git clone https://github.com/jankrepl/mltype.git
cd mltype
pip install -e .

1.1 Extra dependencies

One can use the following sytax to install extra dependencies

pip install -e .[GROUP]

Below are the available groups with

• dev - development tools

• hecate - tools for running optional curses tests

• mlflow - optional tracking tool to visualize training progress

3

mltype

4 Chapter 1. Installation

CHAPTER

TWO

COMMAND LINE INTERFACE

The command line interface (CLI) is the primary way of using mltype. After installation, one can use the entrypoint
mlt that is going to be in the path.

$ mlt
Usage: mlt [OPTIONS] COMMAND [ARGS]...

Tool for improving typing speed and accuracy

Options:
--help Show this message and exit.

Commands:
file Type text from a file.
ls List all language models
random Sample characters randomly from a provided vocabulary
raw Provide text manually
replay Compete against a past performance
sample Sample text from a language
train Train a language

Note that mltype uses the folder ~/.mltype (in the home directory) for storing all relevant data. See below the
usual structure.

- .mltype/
- checkpoints/

- a/ # training checkpoints of model a
- b/ # training checkpoints of model b

- languages/
- a # some model
- b # some other model
...

- logs/
..

5

mltype

2.1 file

Type random (or fixed) lines from a text file. This command has two main modes:

1. Random lines - Select random consecutive lines. One needs to specify --n-lines and optionally the
random-state (for reproducibility).

2. Fixed lines - One needs to specify --start-line and --end-line.

2.1.1 Arguments

• PATH - Path to the text file to read from

2.1.2 Options

• -e, --end-line INTEGER - The end line of the excerpt to use. Needs to be used together with start-line.

• -f, --force-perfect - All characters need to be typed correctly

• -i, --instant-death - End game after the first mistake

• -l, --n-lines INTEGER - Number of consecutive lines to be selected at random. Cannot be used together
with start-line and end-line.

• -o, --output-file PATH - Path to where to save the result file

• -r, --random-state INTEGER

• -s, --start-line INTEGER - the start line of the excerpt to use. needs to be used together with end-line.

• -t, --target-wpm INTEGER - The desired speed to be shown as a guide

• -w, --include-whitespace - Include whitespace characters.

2.1.3 Examples

Let us first create a text file

echo $'zeroth\nfirst\nsecond\nthird\nfourth\nfifth\nsixth' > text.txt
cat text.txt

zeroth
first
second
third
fourth
fifth
sixth

To select contiguous lines randomly, one can to specify -l, --n_lines representing the number of lines to use.

mlt file -l 2 text.txt

Which would open the typing interface with 2 random contiguous lines

second third

6 Chapter 2. Command Line Interface

mltype

The other option would be to use the deterministic mode and select the starting and ending line manually

mlt file -s 0 -e 3 text.txt

zeroth first second

As multiple commands, one can specify a target speed and an output file. Note that we follow the Python convention
- line counting starts from zero and the intervals contain the starting line but not the ending one.

Note that one can keep the whitespace characters (including newlines) in the text by adding the -w,
--include_whitespace option

mlt file -l 2 -w text.txt

second
third

2.2 ls

List available language models. One can use them with sample.

Please check the official github to download pretrained models - mltype github.

Note: mlt ls simply lists all the files present in ~.mltype/languages.

2.2.1 Examples

mlt ls

python
some_amazing_model
wikipedia

2.3 random

Generate random sequence of characters based on provided counts. The absolute counts are converted to relative
counts (probability distribution) that we sample from.

Note: mlt random samples characters independently unlike mlt sample which conditions on previous charac-
ters.

2.2. ls 7

https://github.com/jankrepl/mltype

mltype

2.3.1 Arguments

• CHARACTERS - Characters to include in the vocabulary. The higher the number of occurances of a given
character the higher the probabilty of this character being sampled.

2.3.2 Options

• -f, --force-perfect - All characters need to be typed correctly

• -i, --instant-death - End game after the first mistake

• -n, --n-chars INTEGER - Number of characters to sample

• -o, --output-file PATH - Path to where to save the result file

• -t, --target-wpm INTEGER - The desired speed to be shown as a guide

2.3.3 Examples

Let’s say we want to practise typing of digits. However, we would like to spend more time on 5’s and 6’s since they
are harder.

mlt random "123455556666789 "

This would give us something like this.

546261561 3566 53 5496 556659554 435 1386559569 5 85641553465118589

We see that the most frequent characters are 5’s, 6’s and spaces.

2.4 raw

Provide text manually.

2.4.1 Arguments

• TEXT - Text to be transfered to the typing interface

2.4.2 Options

• -f, --force-perfect - All characters need to be typed correctly

• -i, --instant-death - End game after the first mistake

• -o, --output-file PATH - Path to where to save the result file

• -r, --raw-string - If active, then newlines and tabs are not seen as special characters

• -t, --target-wpm INTEGER - The desired speed to be shown as a guide

8 Chapter 2. Command Line Interface

mltype

2.4.3 Examples

Let’s say we have some text in the clipboard that we just paste and type. Additionally, we want to see the 80 word per
minute (WPM) marker. Lastly, no errors are acceptable—instant death mode.

mlt raw -i -t 80 "Hello world I will write you quickly"

Hello world I will write you quickly

2.5 replay

Play against a past performance. To save a past performance one can use the option -o, --output_file of the
following commands

• file

• random

• raw

• sample

2.5.1 Arguments

• REPLAY_FILE - Past performance to play against

2.5.2 Options

• -f, --force-perfect - All characters need to be typed correctly

• -i, --instant-death - End game after the first mistake

• -t, --target-wpm INTEGER - The desired speed to be shown as a guide

• -w, --overwrite PATH - Overwrite in place if faster

2.5.3 Examples

We ran mlt sample ... -o replay_file and we are not particularly happy about the performance. We
would like to replay the same text and try to improve our speed. In case we do, we would like the replay_file to
be updated automatically (using the -w, --overwrite option).

mlt replay -w replay_file

Some text we already typed before.

2.5. replay 9

mltype

2.6 sample

Generate text using a character-level language model.

Note: As opposed to mlt random, the mlt sample command is taking into consideration all the previous
characters and therefore could generate more realistic text.

To see all the available models use ls. Please check the official github to download pretrained models - mltype github.

2.6.1 Arguments

• MODEL_NAME - Name of the language model

2.6.2 Options

• -f, --force-perfect - All characters need to be typed correctly

• -i, --instant-death - End game after the first mistake

• -k, --top-k INTEGER - Consider only the top k most probable characters

• -n, --n-chars INTEGER - Number of characters to generate

• -o, --output-file PATH - Path to where to save the result file

• -r, --random-state INTEGER - Random state for reproducible results

• -s, --starting-text TEXT - Initial text used as a starting condition

• -t, --target-wpm INTEGER - The desired speed to be shown as a guide

• -v, --verbose Show progressbar when generating text

2.6.3 Examples

We want to practise typing Python without having to worry about having real source code. Assuming we have a decent
language model for Python (see train) called amazing_python_model then we can do the following

mlt sample amazing_python_model

spatial_median(X, method="lar", call='Log', Cov']) glm.fit(X, y) assert_all
close(ref_no_encoded_c

Maybe we would like to give the model some initial text and let it complete it for us.

mlt sample -s "@pytest.mark.parametrize" amazing_python_model

@pytest.mark.parametrize('solver', ['sparse_cg', 'sag', 'saga'])
@pytest.mark.parametrize('copy_X', ['not a number', -0.10]]

10 Chapter 2. Command Line Interface

https://github.com/jankrepl/mltype

mltype

2.7 train

Train a character-level language model. The trained model can then be used with sample.

In the background, we use an LSTM and feedforward network architecture to achieve this task. The user can set most
of the important hyperparameters via the CLI options. Note that one can train without a GPU, however, to get access
to bigger networks and faster training (~minutes/hours) GPUs are recommended.

2.7.1 Arguments

• PATH_1, PATH_2, . . . - Paths to files or folders containing text to be trained on

• MODEL_NAME - Name of the trained model

2.7.2 Options

• -b, --batch-size INTEGER - Number of samples in a batch

• -c, --checkpoint-path PATH - Load a checkpoiont and continue training it

• -d, --dense-size INTEGER - Size of the dense layer

• -e, --extensions TEXT - Comma-separated list of allowed extensions

• -f, --fill-strategy TEXT - Either zeros or skip. Determines how to deal with out of vocabulary char-
acters

• -g, --gpus INTEGER - Number of gpus. In not specified, then none. If -1, then all.

• -h, --hidden_size INTEGER - Size of the hidden state

• -i, --illegal-chars TEXT - Characters to exclude from the vocabulary.

• -l, --n-layers :code`INTEGER` - Number of layesr in the recurrent network

• -m, --use-mlflow - Use MLFlow for logging

• -n, --max-epochs INTEGER - Maximum number of epochs

• -o, --output-path PATH - Custom path where to save the trained models and logging details. If not
provided it defaults to ~/.mltype.

• -s, --early-stopping - Enable early stopping based on validation loss

• -t, --train-test-split FLOAT - Train test split - value between (0, 1)

• -v, --vocab-size INTEGER - Number of the most frequent characters to include in the vocabulary

• -w, --window-size INTEGER - Number of previous characters to consider for prediction

2.7. train 11

mltype

2.7.3 Examples

Let’s assume we have a book in fulltext saved in the book.txt file. Our goal would be to train a model that learns
the language used in this book and is able to sample new pieces of text that resemble the original.

See below a list of hyperparameters that work reasonably well and the training can be done in a few hours (on a GPU)

• --batch-size 128

• --dense-size 1024

• --early-stopping

• --gpus 1

• --hidden-size 512

• --max-epochs 10

• --n-layers 3

• --vocab-size 70

• --window-size 100

So overall the commands looks like

mlt train book.txt cool_model -n 3 -s -g 1 -b 128 -l 3 -h 512 -d 1024 -w 100 -v 80

During the training, one can see progress bars and the training and validation loss (using pytorch-lightning in
the background). Once the training is done, the best model (based the validation loss) will be stored in ~/.mltype/
languages/cool_model.

There are several important customizatons that one should be aware of.

Using MLflow

If one wants to get more training progress information theere is a flag --use-mlflow (requiring mlflow being
installed). To launch the ui run the following commands

cd ~/.mltype/logs
mlflow ui

Multiple files

mlt train supports training from multiple files and folders. This is really useful if we want to recursively create
a training set of all files in a given folder (e.g. github repository). Additionally, one can use the --extensions to
control what files are considered when traversing a folder.

mlt train main.py folder_with_a_lot_of_files model --extensions ".py"

The above command will create a training set out of all files inside of the folder_with_a_lot_of_files folder
having the “.py” suffix and also the main.py.

Excluding undesirable characters

If the input files contain some characters that we do not want the model to have in its vocabulary, we can simply use
the --illegal-chars option. Internally, when an out of vocabulary character is encounter, there are two strategies
to handle this (controled via --fill-strategy)

• zeros - vector of zeros is used

• skip - only consider samples that do not have out of vocabulary characters anywhere in their window

12 Chapter 2. Command Line Interface

mltype

mlt train book.txt cool_model --illegal-chars "~{}`[]"

2.7. train 13

mltype

14 Chapter 2. Command Line Interface

CHAPTER

THREE

EXAMPLES

3.1 Competing against yourself

15

mltype

16 Chapter 3. Examples

CHAPTER

FOUR

CHANGELOG

4.1 v0.1.1

• [BUGFIX] Add addstr method for the Cursor class - tab wasn’t working

• [BUGFIX] Add additional recognized key for BACKSPACE to fix linux bug

4.2 v0.1

Initial release

17

mltype

18 Chapter 4. Changelog

CHAPTER

FIVE

MLTYPE PACKAGE

5.1 Submodules

5.2 mltype.base module

Building blocks.

class mltype.base.Action(pressed_key, status, ts)
Bases: object

Representation of one keypress.

Parameters

• pressed_key (str) – What key was pressed. We define a convention that pressing a
backspace will be represented as pressed_key=None.

• status (int) – What was the status AFTER pushing the key. It should be one of the
following integers:

– STATUS_BACKSPACE

– STATUS_CORRECT

– STATUS_WRONG

• ts (datetime) – The timestamp corresponding to this action.

class mltype.base.TypedText(text)
Bases: object

Abstraction that represenets the text that needs to be typed.

Parameters text (str) – Text that needs to be typed.

actions
List of lists of Action instances of length equal to len(text). It logs per character all actions that have been
taken on it.

Type list

start_ts
Timestamp of when the first action was performed (not the time of initialization).

Type datetime or None

end_ts
Timestamp of when the last action was taken. Note that it is the action that lead to the text being correctly
typed in it’s entirity.

19

mltype

Type datetime or None

check_finished(force_perfect=True)
Determine whether the typing has been finished successfully.

Parameters force_perfect (bool) – If True, one can only finished if all the characters
were typed correctly. Otherwise, all characters need to be either correct or wrong.

compute_accuracy()
Compute the accuracy of the typing.

compute_cpm()
Compute characters per minute.

compute_wpm(word_size=5)
Compute words per minute.

property elapsed_seconds
Get the number of seconds elapsed from the first action.

classmethod load(path)
Load a pickled file.

Parameters path (pathlib.Path) – Path to the pickle file.

Returns typed_text – Instance of the TypedText

Return type TypedText

property n_actions
Get the number of actions that have been taken.

property n_backspace_actions
Get the number of backspace actions.

property n_backspace_characters
Get the number of characters that have been backspaced.

property n_characters
Get the number of characters in the text.

property n_correct_characters
Get the number of characters that have been typed correctly.

property n_untouched_characters
Get the number of characters that have not been touched yet.

property n_wrong_characters
Get the number of characters that have been typed wrongly.

save(path)
Save internal state of this TypedText.

Can be loaded via the class method load.

Parameters path (pathlib.Path) – Where the .rlt file will be store.

type_character(i, ch=None)
Type one single character.

Parameters

• i (int) – Index of the character in the text.

• ch (str or None) – The character that was typed. Note that if None then we assume
that the user used backspace.

20 Chapter 5. mltype package

mltype

unroll_actions()
Export actions in an order they appeared.

Returns res – List of tuples of (ix_char, Action(..))

Return type list

5.3 mltype.cli module

Command line interface.

5.4 mltype.data module

Data creating and managing.

mltype.data.file2text(filepath, verbose=True)
Read all lines of a file into a string.

Note that we destroy all the new line characters and all the whitespace charecters on both ends of the
line. Note that this is very radical for source code of programming languages or similar.

Parameters

• filepath (pathlib.Path) – Path to the file

• verbose (bool) – If True, we print the name of the file.

Returns text – All the text found in the input file.

Return type str

mltype.data.folder2text(folderpath, valid_extensions=None)
Collect all files recursively and read into a list of strings.

5.5 mltype.interactive module

Module implementing interaction logic.

class mltype.interactive.Cursor(stdscr)
Bases: object

Utility class that can locate and modify the position of a cursor.

move_abs(y, x)
Move absolutely to cooordinates.

Note that if the column coordinate x is out of the screen then we automatically move to differnt row.

y, x [int] New coordinates where to move the cursor to.

class mltype.interactive.Pen(font, background, i)
Bases: object

Represents background and font color.

addch(stdscr, y, x, text)
Add a single character.

5.3. mltype.cli module 21

mltype

Parameters

• stdscr (curses.Window) – Window in which we add the character.

• y (int) – Position of the character.

• x (int) – Position of the character.

• text (str) – Single element string representing the character.

addstr(stdscr, y, x, text)
Add a string.

Parameters

• stdscr (curses.Window) – Window in which we add the character.

• y (int) – Position of the string.

• x (int) – Position of the string.

• text (str) – String to put to the screen.

class mltype.interactive.TypedTextWriter(tt, stdscr, y_start=0, x_start=0, replay_tt=None,
target_wpm=None)

Bases: object

Curses writer that uses the TypedText object.

We make an assumption that the x and y position of the starting character stay the same.

Parameters

• tt (TypedText) – Text that the user is going to type.

• stdscr (curses.Window) – Main curses window.

• y_start (int) – Coordinates of the first character.

• x_start (int) – Coordinates of the first character.

• replay_tt (TypedText or None) – If provided, it represents a previously typed text
that we want to dynamically plot together with the current typing.

current_ix
Represents the index of the character of self.tt.text that we are about to type. Note this is exactly the
character on which the cursor will be lying.

Type int

pens
The keys are integers representing different statuses. The values are Pen objects representing how to
format a character with a given status. Note that if replay_tt is provided we add a new entry “replay” and
it represents the style of replay character.

Type dict

replay_uactions
The unrolled actions of the replay.

Type list

replay_elapsed
The same length as replay_uactions. It stores the elapsed times (since the start) of all the actions. Note
that it is going to be sorted in an ascending order and we can do binary search on it.

Type list

22 Chapter 5. mltype package

mltype

target_wpm
If specified, we display the uniform run that leads to that speed.

Type int or None

process_character()
Process an entered character.

render()
Render the entire screen.

property screen_status
Get screen information.

Returns

• i_start (int) – Integer representing the number of cells away from the start we are.

• height, width (int) – Height, width of the screen. Note that user my resize during a session.

mltype.interactive.main_basic(text, force_perfect, output_file, instant_death, target_wpm)
Run main curses loop with no previous replay.

Parameters

• force_perfect (bool) – If True, then one cannot finish typing before all characters are
typed without any mistakes.

• output_file (str or pathlib.Path or None) – If pathlib.Path then we
store the typed text in this file. If None, no saving is taking place.

• instant_death (bool) – If active, the first mistake will end the game.

• target_wpm (int or None) – The desired speed to be displayed as a guide.

mltype.interactive.main_replay(replay_file, force_perfect, overwrite, instant_death, tar-
get_wpm)

Run main curses loop with a replay.

Parameters force_perfect (bool) – If True, then one cannot finish typing before all charac-
ters are typed without any mistakes.

overwrite [bool] If True, the replay file will be overwritten in case we are faster than it.

replay_file [str or pathlib.Path] Typed text in this file from some previous game.

instant_death [bool] If active, the first mistake will end the game.

target_wpm [None or int] The desired speed to be shown as guide.

mltype.interactive.run_loop(stdscr, text, force_perfect=True, replay_tt=None, in-
stant_death=False, target_wpm=None)

Run curses loop - actual implementation.

5.5. mltype.interactive module 23

mltype

5.6 mltype.ml module

Machine learning utilities.

class mltype.ml.LanguageDataset(X, y, vocabulary, transform=None)
Bases: torch.utils.data.dataset.Dataset

Language dataset.

All the inputs of this class should be generated via create_data_language.

Parameters

• X (np.ndarray) – Array of shape (n_samples, window_size) of dtype np.int8. It repre-
sents the features.

• y (np.ndarray) – Array of shape (n_samples,) of dtype np.int8. It represents the targets

• vocabulary (list) – List of characters in the vocabulary.

• transform (callable or None) – Some callable that inputs X and y and returns
some modified instances of them.

ohv_matrix
Matrix of shape (vocab_size + 1, vocab_size). The submatrix ohv_matrix[:vocab_size, :] is an identity
matrix and is used for fast creation of one hot vectors. The last row of ohv_matrix is a zero vector and is
used for encoding out-of-vocabulary characters.

Type np.ndarray

class mltype.ml.SingleCharacterLSTM(vocab_size, hidden_size=16, n_layers=1,
dense_size=128)

Bases: pytorch_lightning.core.lightning.LightningModule

Single character recurrent neural network.

Given some string of characters, we generate the probability distribution of the next character.

Architecture starts with an LSTM (hidden_size, n_layers, vocab_size) network and then we feed the last hidden
state to a fully connected network with one hidden layer (dense_size).

Parameters

• vocab_size (int) – Size of the vocabulary. Necessary since we are encoding each
character as a one hot vector.

• hidden_size (int) – Hidden size of the recurrent cell.

• n_layers (int) – Number of layers in the recurrent network.

• dense_size (int) – Size of the single layer of the feed forward network.

rnn_layer
The recurrent network layer.

Type torch.nn.Module

linear_layer1
Linear layer connecting the last hidden state and the single layer of the feedforward network.

Type torch.nn.Module

linear_layer2
Linear layer connecting the single layer of the feedforward network with the output (of size vocabu-
lary_size).

24 Chapter 5. mltype package

mltype

Type torch.nn.Module

activation_layer
Softmax layer making sure we get a probability distribution.

Type torch.nn.Module

configure_optimizers()
Configure optimizers.

Necessary for pytorch-lightning.

Returns optimizer – The chosen optimizer.

Return type Optimizer

forward(x, h=None, c=None)
Perform forward pass.

Parameters

• x (torch.Tensor) – Input features of shape (batch_size, window_size, vocab_size).
Note that the provided vocab_size needs to be equal to the one provided in the constructor.
The remaining dimensions (batch_size and window_size) can be any positive integers.

• h (torch.Tensor) – Hidden states of shape (n_layers, batch_size, hidden_size). Note
that if provided we enter a continuation mode. In this case to generate the prediction we
just use the last character and the hidden state for the prediction. Note that in this case we
enforce that x.shape=(batch_size, 1, vocab_size).

• c (torch.Tensor) – Hidden states of shape (n_layers, batch_size, hidden_size). Note
that if provided we enter a continuation mode. In this case to generate the prediction we
just use the last character and the hidden state for the prediction. Note that in this case we
enforce that x.shape=(batch_size, 1, vocab_size).

Returns

• probs (torch.Tensor) – Tensor of shape (batch_size, vocab_size). For each sample it rep-
resents the probability distribution over all characters in the vocabulary.

• h_n, c_n (torch.Tensor) – New Hidden states of shape (n_layers, batch_size, hidden_size).

training: bool

training_step(batch, batch_idx)
Run training step.

Necessary for pytorch-lightning.

Parameters

• batch (tuple) – Batch of training samples. The exact definition depends on the dat-
aloader.

• batch_idx (idx) – Index of the batch.

Returns loss – Tensor scalar representing the mean binary cross entropy over the batch.

Return type torch.Tensor

validation_epoch_end(outputs)
Run epoch end validation logic.

We sample 5 times 100 characters from the current network. We then print to the standard output.

5.6. mltype.ml module 25

mltype

Parameters outputs (list) – List of batches that were collected over the validation set with
validation_step.

validation_step(batch, batch_idx)
Run validation step.

Optional for pytorch-lightning.

Parameters batch (tuple) – Batch of validation samples. The exact definition depends on
the dataloader.

batch_idx [idx] Index of the batch.

Returns vocabulary – Vocabulary in order to have access in validation_epoch_end.

Return type list

mltype.ml.create_data_language(text, vocabulary, window_size=2, fill_strategy='zeros', ver-
bose=False)

Create a supervised dataset for the characte/-lever language model.

Parameters

• text (str) – Some text.

• vocabulary (list) – Unique list of supported characters. Their corresponding indices
are going to be used for the one hot encoding.

• window_size (int) – The number of previous characters to condition on.

• fill_strategy (str, {"skip", "zeros"}) – Strategy for handling initial char-
acters and unknown characters.

• verbose (bool) – If True, progress bar is showed.

Returns

• X (np.ndarray) – Features array of shape (len(text), window_size) if fill_strategy=zeros, oth-
erwise it might be shorter. The dtype is np.int8. If applicable, the integer (len(vocabulary))
represnts a zero vector (out of vocabulary token).

• y (np.ndarray) – Targets array of shape (len(text),) if fill_strategy=zeros, otherwise it might
be shorter. The dtype is np.int8.

• indices (np.ndarray) – For each sample an index of the character we are trying to pre-
dict. Note that for fill_strategy=”zeros” it is going to be np.arange(len(text)). However,
for different strategies might have gaps. It helps us to keep track of the sample - character
correspondence.

mltype.ml.load_model(path)
Load serialized model and vocabulary.

Parameters path (pathlib.Path) – Path to where the file lies. This file was created by
save_model method.

Returns

• model_inst (SingleCharacterLSTM) – Instance of the model. Note that all of its parameters
will be lying on a CPU.

• vocabulary (list) – Corresponding vocabulary.

26 Chapter 5. mltype package

mltype

mltype.ml.run_train(texts, name, max_epochs=10, window_size=50, batch_size=32, vo-
cab_size=None, fill_strategy='skip', illegal_chars='', train_test_split=0.5,
hidden_size=32, dense_size=32, n_layers=1, checkpoint_path=None, out-
put_path=None, use_mlflow=True, early_stopping=True, gpus=None)

Run the training loop.

Note that the parameters are also explained in the cli of mlt train.

Parameters

• texts (list) – List of str representing all texts we would like to train on.

• name (str) – Name of the model. This name is only used when we save the model - it is
not hardcoded anywhere in the serialization.

• max_epochs (int) – Maximum number of epochs. Note that the number of actual epochs
can be lower if we activate the early_stopping flag.

• window_size (int) – Number of previous characters to consider when predicting the
next character. The higher the number the longer the memory we are enforcing. Howerever,
at the same time, the training becomes slower.

• batch_size (int) – Number of samples in one batch.

• vocab_size (int) – Maximum number of characters to be put in the vocabulary. Note
that one can explicityly exclude characters via illegal_chars. The higher this number the
bigger the feature vectors are and the slower the training.

• fill_strategy (str, {"zeros", "skip"}) – Determines how to deal with out
of vocabulary characters. When “zeros” then we simply encode them as zero vectors. If
“skip”, we skip a given sample if any of the characters in the window or the predicted
character are not in the vocabulary.

• illegal_chars (str or None) – If specified, then each character of the str repre-
sents a forbidden character that we do not put in the vocabulary.

• train_test_split (float) – Float in the range (0, 1) representing the percentage of
the training set with respect to the entire dataset.

• hidden_size (int) – Hidden size of LSTM cells (equal in all layers).

• dense_size (int) – Size of the dense layer that is bridging the hidden state outputted by
the LSTM and the final output probabilities over the vocabulary.

• n_layers (int) – Number of layers inside of the LSTM.

• checkpoint_path (None or pathlib.Path or str) – If specified, it is point-
ing to a checkpoint file (generated by Pytorch-lightning). This file does not contain the
vocabulary. It can be used to continue the training.

• output_path (None or pathlib.Path or str) – If specified, it is an alterna-
tive output folder when the trained models and logging information will be stored. If not
specified the output folder is by default set to ~/.mltype.

• use_mlflow (bool) – If active, than we use mlflow for logging of training and validation
loss. Additionally, at the end of each epoch we generate a few sample texts to demonstrate
how good/bad the current network is.

• early_stopping (bool) – If True, then we monitor the validation loss and if it does
not improve for a certain number of epochs then we stop the traning.

• gpus (int or None) – If None or 0, no GPUs are used (only CPUs). Otherwise, it
represents the number of GPUs to be used (using the data parallelization strategy).

5.6. mltype.ml module 27

mltype

mltype.ml.sample_char(network, vocabulary, h=None, c=None, previous_chars=None, ran-
dom_state=None, top_k=None, device=None)

Sample a character given network probability prediciton (with a state).

Parameters

• network (torch.nn.Module) – Trained neural network that outputs a probability dis-
tribution over vocabulary.

• vocabulary (list) – List of unique characters.

• h (torch.Tensor) – Hidden states with shape (n_layers, batch_size=1, hidden_size).
Note that if both of them are None we are at the very first character.

• c (torch.Tensor) – Hidden states with shape (n_layers, batch_size=1, hidden_size).
Note that if both of them are None we are at the very first character.

• previous_chars (None or str) – Previous charaters. None or and empty string if
we are at the very first character.

• random_state (None or int) – Guarantees reproducibility.

• top_k (None or int) – If specified, we only sample from the top k most probably
characters. Otherwise all of them.

• device (None or torch.device) – By default torch.device(“cpu”).

Returns ch – A character from the vocabulary.

Return type str

mltype.ml.sample_text(n_chars, network, vocabulary, initial_text=None, random_state=None,
top_k=None, verbose=False, device=None)

Sample text by unrolling character by character predictions.

Note that keep the pass hidden states with each character prediciton and there is not need to specify a window.

Parameters

• n_chars (int) – Number of characters to sample.

• network (torch.nn.Module) – Pretrained character level network.

• vocabulary (list) – List of unique characters.

• initial_text (None or str) – If specified, initial text to condition based on.

• random_state (None or int) – Allows reproducibility.

• top_k (None or int) – If specified, we only sample from the top k most probable
characters. Otherwise all of them.

• verbose (bool) – Controls verbosity.

• device (None or torch.device) – By default torch.device(“cpu”).

Returns text – Generated text of length n_chars + len(initial_text).

Return type str

mltype.ml.save_model(model, vocabulary, path)
Serialize a model.

Note that we require that the model has a property hparams that we can unpack into the constructor of the class
and get the same network architecture. This is automatically the case if we subclass from pl.LightningModule.

Parameters

28 Chapter 5. mltype package

mltype

• model (SingleCharacterLSTM) – Torch model to be saved. Additionally, we require
that it has the hparams property that contains all necessary hyperparameters to instantiate
the model.

• vocabulary (list) – The corresponding vocabulary.

• path (pathlib.Path) – Path to the file that will whole the serialized object.

mltype.ml.text2features(text, vocabulary)
Create per character one hot encoding.

Note that we employ the zeros strategy out of vocabulary characters.

Parameters

• text (str) – Text.

• vocabulary (list) – Vocabulary to be used for the endcoding.

Returns res – Array of shape (len(text), len(vocabulary) of boolean dtype. Each row represents the
one hot encoding of the respective character. Note that out of vocabulary characters are encoding
with a zero vector.

Return type np.ndarray

5.7 mltype.stats module

Computation of various statistics.

mltype.stats.times_per_character(tt)
Compute per caracter analysis.

Parameters tt (TypedText) – Instance of the TypedText.

Returns stats – Keys are characters and values are list of time intervals it took to write the last
correct instance.

Return type dict

5.8 mltype.utils module

Collection of utility functions.

mltype.utils.get_cache_dir(predefined_path=None)
Get the cache directory path and potentially create it.

If no predefined path provided, we simply take ~/.mltype. Note that if one changes the os.environ[“home”]
dynamically it will influence the output of this function. this is done on purpose to simplify testing.

Parameters predefined_path (None or pathlib.Path or str) – If provided, we
just return the same path. We potentially create the directory if it does not exist. If it is not
provided we use $HOME/.mltype.

Returns path – Path to where the caching directory is located.

Return type pathlib.Path

mltype.utils.get_mlflow_artifacts_path(client, run_id)
Get path to where the artifacts are located.

The benefit is that we can log any file into it and even create a custom folder hierarachy.

5.7. mltype.stats module 29

mltype

Parameters

• client (mlflow.tracking.MlflowClient) – Client.

• run_id (str) – Unique identifier of a run.

Returns path – Path to the root folder of artifacts.

Return type pathlib.Path

mltype.utils.print_section(name, fill_char='=', drop_end=False, add_ts=True)
Print nice section blocks.

Parameters

• name (str) – Name of the section.

• fill_char (str) – Character to be used for filling the line.

• drop_end (bool) – If True, the ending line is not printed.

• add_ts (bool) – We add a time step to the heading.

5.9 Module contents

Python package.

30 Chapter 5. mltype package

PYTHON MODULE INDEX

m
mltype, 30
mltype.base, 19
mltype.cli, 21
mltype.data, 21
mltype.interactive, 21
mltype.ml, 24
mltype.stats, 29
mltype.utils, 29

31

mltype

32 Python Module Index

INDEX

A
Action (class in mltype.base), 19
actions (mltype.base.TypedText attribute), 19
activation_layer (ml-

type.ml.SingleCharacterLSTM attribute),
25

addch() (mltype.interactive.Pen method), 21
addstr() (mltype.interactive.Pen method), 22

C
check_finished() (mltype.base.TypedText method),

20
compute_accuracy() (mltype.base.TypedText

method), 20
compute_cpm() (mltype.base.TypedText method), 20
compute_wpm() (mltype.base.TypedText method), 20
configure_optimizers() (ml-

type.ml.SingleCharacterLSTM method),
25

create_data_language() (in module mltype.ml),
26

current_ix (mltype.interactive.TypedTextWriter at-
tribute), 22

Cursor (class in mltype.interactive), 21

E
elapsed_seconds() (mltype.base.TypedText prop-

erty), 20
end_ts (mltype.base.TypedText attribute), 19

F
file2text() (in module mltype.data), 21
folder2text() (in module mltype.data), 21
forward() (mltype.ml.SingleCharacterLSTM method),

25

G
get_cache_dir() (in module mltype.utils), 29
get_mlflow_artifacts_path() (in module ml-

type.utils), 29

L
LanguageDataset (class in mltype.ml), 24
linear_layer1 (mltype.ml.SingleCharacterLSTM at-

tribute), 24
linear_layer2 (mltype.ml.SingleCharacterLSTM at-

tribute), 24
load() (mltype.base.TypedText class method), 20
load_model() (in module mltype.ml), 26

M
main_basic() (in module mltype.interactive), 23
main_replay() (in module mltype.interactive), 23
mltype

module, 30
mltype.base

module, 19
mltype.cli

module, 21
mltype.data

module, 21
mltype.interactive

module, 21
mltype.ml

module, 24
mltype.stats

module, 29
mltype.utils

module, 29
module

mltype, 30
mltype.base, 19
mltype.cli, 21
mltype.data, 21
mltype.interactive, 21
mltype.ml, 24
mltype.stats, 29
mltype.utils, 29

move_abs() (mltype.interactive.Cursor method), 21

N
n_actions() (mltype.base.TypedText property), 20

33

mltype

n_backspace_actions() (mltype.base.TypedText
property), 20

n_backspace_characters() (ml-
type.base.TypedText property), 20

n_characters() (mltype.base.TypedText property),
20

n_correct_characters() (mltype.base.TypedText
property), 20

n_untouched_characters() (ml-
type.base.TypedText property), 20

n_wrong_characters() (mltype.base.TypedText
property), 20

O
ohv_matrix (mltype.ml.LanguageDataset attribute),

24

P
Pen (class in mltype.interactive), 21
pens (mltype.interactive.TypedTextWriter attribute), 22
print_section() (in module mltype.utils), 30
process_character() (ml-

type.interactive.TypedTextWriter method),
23

R
render() (mltype.interactive.TypedTextWriter

method), 23
replay_elapsed (mltype.interactive.TypedTextWriter

attribute), 22
replay_uactions (ml-

type.interactive.TypedTextWriter attribute),
22

rnn_layer (mltype.ml.SingleCharacterLSTM at-
tribute), 24

run_loop() (in module mltype.interactive), 23
run_train() (in module mltype.ml), 26

S
sample_char() (in module mltype.ml), 27
sample_text() (in module mltype.ml), 28
save() (mltype.base.TypedText method), 20
save_model() (in module mltype.ml), 28
screen_status() (ml-

type.interactive.TypedTextWriter property),
23

SingleCharacterLSTM (class in mltype.ml), 24
start_ts (mltype.base.TypedText attribute), 19

T
target_wpm (mltype.interactive.TypedTextWriter at-

tribute), 22
text2features() (in module mltype.ml), 29

times_per_character() (in module mltype.stats),
29

training (mltype.ml.SingleCharacterLSTM attribute),
25

training_step() (mltype.ml.SingleCharacterLSTM
method), 25

type_character() (mltype.base.TypedText method),
20

TypedText (class in mltype.base), 19
TypedTextWriter (class in mltype.interactive), 22

U
unroll_actions() (mltype.base.TypedText method),

20

V
validation_epoch_end() (ml-

type.ml.SingleCharacterLSTM method),
25

validation_step() (ml-
type.ml.SingleCharacterLSTM method),
26

34 Index

	Installation
	Extra dependencies

	Command Line Interface
	file
	ls
	random
	raw
	replay
	sample
	train

	Examples
	Competing against yourself

	Changelog
	v0.1.1
	v0.1

	mltype package
	Submodules
	mltype.base module
	mltype.cli module
	mltype.data module
	mltype.interactive module
	mltype.ml module
	mltype.stats module
	mltype.utils module
	Module contents

	Python Module Index
	Index

