

    
      
          
            
  
mltype

[image: _images/c66e189c3e073224724314e6105de3603c88a973.png]
mltype is a terminal application for improving typing speed
and accuracy. It does so with a tiny bit of deep learning.


Contents:


	Installation
	Extra dependencies





	Command Line Interface
	file

	ls

	random

	raw

	replay

	sample

	train





	Examples
	Competing against yourself





	Changelog
	v0.1.1

	v0.1










API:


	mltype package
	Submodules

	mltype.base module

	mltype.cli module

	mltype.data module

	mltype.interactive module

	mltype.ml module

	mltype.stats module

	mltype.utils module

	Module contents













            

          

      

      

    

  

    
      
          
            
  
Installation

The simplest way to install mltype is via PyPI

pip install mltype





To get the latest version or potentially help with developlment,
clone the github repository

git clone https://github.com/jankrepl/mltype.git
cd mltype
pip install -e .






Extra dependencies

One can use the following sytax to install extra dependencies

pip install -e .[GROUP]





Below are the available groups with


	dev - development tools


	hecate - tools for running optional curses tests


	mlflow - optional tracking tool to visualize training progress










            

          

      

      

    

  

    
      
          
            
  
Command Line Interface

The command line interface (CLI) is the primary way of using
mltype. After installation, one can use the entrypoint
mlt that is going to be in the path.

$ mlt
Usage: mlt [OPTIONS] COMMAND [ARGS]...

  Tool for improving typing speed and accuracy

Options:
  --help  Show this message and exit.

Commands:
  file    Type text from a file.
  ls      List all language models
  random  Sample characters randomly from a provided vocabulary
  raw     Provide text manually
  replay  Compete against a past performance
  sample  Sample text from a language
  train   Train a language





Note that mltype uses the folder ~/.mltype (in the home
directory) for storing all relevant data. See below the usual structure.

- .mltype/
   - checkpoints/
       - a/  # training checkpoints of model a
       - b/  # training checkpoints of model b
   - languages/
       - a  # some model
       - b  # some other model
       ...
   - logs/
      ..






file

Type random (or fixed) lines from a text file. This command has
two main modes:


	Random lines - Select random consecutive lines. One needs to specify
--n-lines and optionally the random-state (for
reproducibility).


	Fixed lines - One needs to specify --start-line and
--end-line.





Arguments


	PATH - Path to the text file to read from







Options


	-e, --end-line INTEGER - The end line of the excerpt to use.
Needs to be used together with start-line.


	-f, --force-perfect - All characters need to be typed correctly


	-i, --instant-death - End game after the first mistake


	-l, --n-lines INTEGER - Number of consecutive lines to be
selected at random. Cannot be used together with start-line and end-line.


	-o, --output-file PATH - Path to where to save the result file


	-r, --random-state INTEGER


	-s, --start-line INTEGER - the start line of the excerpt to
use. needs to be used together with end-line.


	-t, --target-wpm INTEGER - The desired speed to be shown as
a guide


	-w, --include-whitespace - Include whitespace characters.







Examples

Let us first create a text file

echo $'zeroth\nfirst\nsecond\nthird\nfourth\nfifth\nsixth' > text.txt
cat text.txt





zeroth
first
second
third
fourth
fifth
sixth





To select contiguous lines randomly, one can to specify -l, --n_lines
representing the number of lines to use.

mlt file -l 2 text.txt





Which would open the typing interface with 2 random contiguous lines

second third





The other option would be to use the deterministic mode and
select the starting and ending line manually

mlt file -s 0 -e 3 text.txt





zeroth first second





As multiple commands, one can specify a target speed and an output file.
Note that we follow the Python convention - line counting starts from
zero and the intervals contain the starting line but not the ending
one.

Note that one can keep the whitespace characters (including newlines)
in the text by adding the -w, --include_whitespace option

mlt file -l 2 -w text.txt





second
third










ls

List available language models. One can use them with sample.

Please check the official github to download pretrained models -
mltype github [https://github.com/jankrepl/mltype].


Note

mlt ls simply lists all the files present
in ~.mltype/languages.




Examples

mlt ls





python
some_amazing_model
wikipedia










random

Generate random sequence of characters based on provided counts.
The absolute counts are converted to relative counts (probability distribution)
that we sample from.


Note

mlt random samples characters independently unlike
mlt sample which conditions on previous characters.




Arguments


	CHARACTERS - Characters to include in the vocabulary. The higher
the number of occurances of a given character the higher the probabilty
of this character being sampled.







Options


	-f, --force-perfect - All characters need to be typed correctly


	-i, --instant-death - End game after the first mistake


	-n, --n-chars INTEGER - Number of characters to sample


	-o, --output-file PATH - Path to where to save the result file


	-t, --target-wpm INTEGER - The desired speed to be shown as
a guide







Examples

Let’s say we want to practise typing of digits. However, we would like to spend
more time on 5’s and 6’s since they are harder.

mlt random "123455556666789    "





This would give us something like this.

546261561 3566  53 5496 556659554 435 1386559569  5 85641553465118589





We see that the most frequent characters are 5’s, 6’s and spaces.






raw

Provide text manually.


Arguments


	TEXT - Text to be transfered to the typing interface







Options


	-f, --force-perfect - All characters need to be typed correctly


	-i, --instant-death - End game after the first mistake


	-o, --output-file PATH - Path to where to save the result file


	-r, --raw-string - If active, then newlines and tabs are not seen as
special characters


	-t, --target-wpm INTEGER - The desired speed to be shown as
a guide







Examples

Let’s say we have some text in the clipboard that we just paste and type.
Additionally, we want to see the 80 word per minute (WPM) marker. Lastly,
no errors are acceptable—instant death mode.

mlt raw -i -t 80 "Hello world I will write you quickly"





Hello world I will write you quickly










replay

Play against a past performance. To save a past
performance one can use the option -o, --output_file of the following
commands


	file


	random


	raw


	sample





Arguments


	REPLAY_FILE - Past performance to play against







Options


	-f, --force-perfect - All characters need to be typed correctly


	-i, --instant-death - End game after the first mistake


	-t, --target-wpm INTEGER - The desired speed to be shown as
a guide


	-w, --overwrite PATH - Overwrite in place if faster







Examples

We ran mlt sample ... -o replay_file and we are not particularly happy
about the performance. We would like to replay the same text and try to
improve our speed. In case we do, we would like the replay_file to be
updated automatically (using the -w, --overwrite option).

mlt replay -w replay_file





Some text we already typed before.










sample

Generate text using a character-level language model.


Note

As opposed to mlt random, the mlt sample command
is taking into consideration all the previous characters and
therefore could generate more realistic text.



To see all the available models use ls. Please
check the official github to download pretrained models -
mltype github [https://github.com/jankrepl/mltype].


Arguments


	MODEL_NAME - Name of the language model







Options


	-f, --force-perfect - All characters need to be typed correctly


	-i, --instant-death - End game after the first mistake


	-k, --top-k INTEGER  - Consider only the top k most probable
characters


	-n, --n-chars INTEGER - Number of characters to generate


	-o, --output-file PATH - Path to where to save the result file


	-r, --random-state INTEGER - Random state for reproducible
results


	-s, --starting-text TEXT - Initial text used as a starting
condition


	-t, --target-wpm INTEGER - The desired speed to be shown as
a guide


	-v, --verbose Show progressbar when generating text







Examples

We want to practise typing Python without having to worry about having real
source code. Assuming we have a decent language model for Python (see
train) called amazing_python_model then we can do the following

mlt sample amazing_python_model





spatial_median(X, method="lar", call='Log', Cov']) glm.fit(X, y) assert_all
close(ref_no_encoded_c





Maybe we would like to give the model some initial text
and let it complete it for us.

mlt sample -s "@pytest.mark.parametrize" amazing_python_model





@pytest.mark.parametrize('solver', ['sparse_cg', 'sag', 'saga'])
@pytest.mark.parametrize('copy_X', ['not a number', -0.10]]










train

Train a character-level language model. The trained model can
then be used with sample.

In the background, we use an LSTM and feedforward network architecture
to achieve this task. The user can set most of the important hyperparameters
via the CLI options. Note that one can train without a GPU, however,
to get access to bigger networks and faster training (~minutes/hours) GPUs
are recommended.


Arguments


	PATH_1, PATH_2, … - Paths to files or folders containing
text to be trained on


	MODEL_NAME - Name of the trained model







Options


	-b, --batch-size INTEGER - Number of samples in a batch


	-c, --checkpoint-path PATH - Load a checkpoiont and continue training it


	-d, --dense-size INTEGER - Size of the dense layer


	-e, --extensions TEXT - Comma-separated list of allowed extensions


	-f, --fill-strategy TEXT - Either zeros or skip. Determines how to deal
with out of vocabulary characters


	-g, --gpus INTEGER - Number  of gpus. In not specified, then none.
If -1, then all.


	-h, --hidden_size INTEGER - Size of the hidden state


	-i, --illegal-chars TEXT - Characters to exclude from the
vocabulary.


	-l, --n-layers :code`INTEGER` - Number of layesr in the recurrent
network


	-m, --use-mlflow - Use MLFlow for logging


	-n, --max-epochs INTEGER - Maximum number of epochs


	-o, --output-path PATH - Custom path where to save the
trained models and logging details. If not provided it defaults to
~/.mltype.


	-s, --early-stopping - Enable early stopping based on validation
loss


	-t, --train-test-split FLOAT - Train test split - value between (0, 1)


	-v, --vocab-size INTEGER - Number of the most frequent
characters to include in the vocabulary


	-w, --window-size INTEGER - Number of previous characters
to consider for prediction







Examples

Let’s assume we have a book in fulltext saved in the book.txt file. Our
goal would be to train a model that learns the language used in this book
and is able to sample new pieces of text that resemble the original.

See below a list of hyperparameters that work reasonably well and the
training can be done in a few hours (on a GPU)


	--batch-size 128


	--dense-size 1024


	--early-stopping


	--gpus 1


	--hidden-size 512


	--max-epochs 10


	--n-layers 3


	--vocab-size 70


	--window-size 100




So overall the commands looks like

mlt train book.txt cool_model -n 3 -s -g 1 -b 128 -l 3 -h 512 -d 1024 -w 100 -v 80





During the training, one can see progress bars and the training and
validation loss (using pytorch-lightning in the background).
Once the training is done, the best model (based the validation loss)
will be stored in ~/.mltype/languages/cool_model.

There are several important customizatons that one should be aware of.

Using MLflow

If one wants to get more training progress information theere is a flag
--use-mlflow (requiring mlflow being installed). To launch
the ui run the following commands

cd ~/.mltype/logs
mlflow ui





Multiple files

mlt train supports training from multiple files and folders.
This is really useful if we want to recursively create a training
set of all files in a given folder (e.g. github repository). Additionally,
one can use the --extensions to control what files are considered
when traversing  a folder.

mlt train main.py folder_with_a_lot_of_files model --extensions ".py"





The above command will create a training set out of all files inside
of the folder_with_a_lot_of_files folder having the
“.py” suffix and also the main.py.

Excluding undesirable characters

If the input files contain some characters that we do not want the model
to have in its vocabulary, we can simply use the --illegal-chars
option. Internally, when an out of vocabulary character is encounter, there
are two strategies to handle this (controled via --fill-strategy)


	zeros - vector of zeros is used


	skip - only consider samples that do not have out of vocabulary
characters anywhere in their window




mlt train book.txt cool_model --illegal-chars "~{}`[]"













            

          

      

      

    

  

    
      
          
            
  
Examples


Competing against yourself







            

          

      

      

    

  

    
      
          
            
  
Changelog


v0.1.1


	[BUGFIX] Add addstr method for the Cursor class - tab wasn’t working


	[BUGFIX] Add additional recognized key for BACKSPACE to fix linux bug







v0.1

Initial release







            

          

      

      

    

  

    
      
          
            
  
mltype package


Submodules




mltype.base module

Building blocks.


	
class mltype.base.Action(pressed_key, status, ts)

	Bases: object

Representation of one keypress.


	Parameters

	
	pressed_key (str) – What key was pressed. We define a convention that pressing
a backspace will be represented as pressed_key=None.


	status (int) – What was the status AFTER pushing the key. It should be one
of the following integers:



	STATUS_BACKSPACE


	STATUS_CORRECT


	STATUS_WRONG










	ts (datetime) – The timestamp corresponding to this action.













	
class mltype.base.TypedText(text)

	Bases: object

Abstraction that represenets the text that needs to be typed.


	Parameters

	text (str) – Text that needs to be typed.






	
actions

	List of lists of Action instances of length equal to len(text).
It logs per character all actions that have been taken on it.


	Type

	list










	
start_ts

	Timestamp of when the first action was performed (not the
time of initialization).


	Type

	datetime or None










	
end_ts

	Timestamp of when the last action was taken. Note that
it is the action that lead to the text being correctly typed
in it’s entirity.


	Type

	datetime or None










	
check_finished(force_perfect=True)

	Determine whether the typing has been finished successfully.


	Parameters

	force_perfect (bool) – If True, one can only finished if all the characters were typed
correctly. Otherwise, all characters need to be either correct
or wrong.










	
compute_accuracy()

	Compute the accuracy of the typing.






	
compute_cpm()

	Compute characters per minute.






	
compute_wpm(word_size=5)

	Compute words per minute.






	
property elapsed_seconds

	Get the number of seconds elapsed from the first action.






	
classmethod load(path)

	Load a pickled file.


	Parameters

	path (pathlib.Path) – Path to the pickle file.



	Returns

	typed_text – Instance of the TypedText



	Return type

	TypedText










	
property n_actions

	Get the number of actions that have been taken.






	
property n_backspace_actions

	Get the number of backspace actions.






	
property n_backspace_characters

	Get the number of characters that have been backspaced.






	
property n_characters

	Get the number of characters in the text.






	
property n_correct_characters

	Get the number of characters that have been typed correctly.






	
property n_untouched_characters

	Get the number of characters that have not been touched yet.






	
property n_wrong_characters

	Get the number of characters that have been typed wrongly.






	
save(path)

	Save internal state of this TypedText.

Can be loaded via the class method load.


	Parameters

	path (pathlib.Path) – Where the .rlt file will be store.










	
type_character(i, ch=None)

	Type one single character.


	Parameters

	
	i (int) – Index of the character in the text.


	ch (str or None) – The character that was typed. Note that if None then we assume
that the user used backspace.













	
unroll_actions()

	Export actions in an order they appeared.


	Returns

	res – List of tuples of (ix_char, Action(..))



	Return type

	list
















mltype.cli module

Command line interface.




mltype.data module

Data creating and managing.


	
mltype.data.file2text(filepath, verbose=True)

	Read all lines of a file into a string.


Note that we destroy all the new line characters
and all the whitespace charecters on both ends
of the line. Note that this is very radical
for source code of programming languages or
similar.





	Parameters

	
	filepath (pathlib.Path) – Path to the file


	verbose (bool) – If True, we print the name of the file.






	Returns

	text – All the text found in the input file.



	Return type

	str










	
mltype.data.folder2text(folderpath, valid_extensions=None)

	Collect all files recursively and read into a list of strings.








mltype.interactive module

Module implementing interaction logic.


	
class mltype.interactive.Cursor(stdscr)

	Bases: object

Utility class that can locate and modify the position of a cursor.


	
move_abs(y, x)

	Move absolutely to cooordinates.

Note that if the column coordinate x is out of the
screen then we automatically move to differnt row.


	y, xint
	New coordinates where to move the cursor to.














	
class mltype.interactive.Pen(font, background, i)

	Bases: object

Represents background and font color.


	
addch(stdscr, y, x, text)

	Add a single character.


	Parameters

	
	stdscr (curses.Window) – Window in which we add the character.


	y (int) – Position of the character.


	x (int) – Position of the character.


	text (str) – Single element string representing the character.













	
addstr(stdscr, y, x, text)

	Add a string.


	Parameters

	
	stdscr (curses.Window) – Window in which we add the character.


	y (int) – Position of the string.


	x (int) – Position of the string.


	text (str) – String to put to the screen.

















	
class mltype.interactive.TypedTextWriter(tt, stdscr, y_start=0, x_start=0, replay_tt=None, target_wpm=None)

	Bases: object

Curses writer that uses the TypedText object.

We make an assumption that the x and y position of the starting
character stay the same.


	Parameters

	
	tt (TypedText) – Text that the user is going to type.


	stdscr (curses.Window) – Main curses window.


	y_start (int) – Coordinates of the first character.


	x_start (int) – Coordinates of the first character.


	replay_tt (TypedText or None) – If provided, it represents a previously typed text that
we want to dynamically plot together with the current
typing.









	
current_ix

	Represents the index of the character of self.tt.text that we
are about to type. Note this is exactly the character on which
the cursor will be lying.


	Type

	int










	
pens

	The keys are integers representing different statuses. The values
are Pen objects representing how to format a character with
a given status. Note that if replay_tt is provided we add a new
entry “replay” and it represents the style of replay character.


	Type

	dict










	
replay_uactions

	The unrolled actions of the replay.


	Type

	list










	
replay_elapsed

	The same length as replay_uactions. It stores the
elapsed times (since the start) of all the actions. Note that
it is going to be sorted in an ascending order and we can do
binary search on it.


	Type

	list










	
target_wpm

	If specified, we display the uniform run that leads to that speed.


	Type

	int or None










	
process_character()

	Process an entered character.






	
render()

	Render the entire screen.






	
property screen_status

	Get screen information.


	Returns

	
	i_start (int) – Integer representing the number of cells away from the start
we are.


	height, width (int) – Height, width of the screen. Note that user my resize during
a session.



















	
mltype.interactive.main_basic(text, force_perfect, output_file, instant_death, target_wpm)

	Run main curses loop with no previous replay.


	Parameters

	
	force_perfect (bool) – If True, then one cannot finish typing before all characters are
typed without any mistakes.


	output_file (str or pathlib.Path or None) – If pathlib.Path then we store the typed text in this file.
If None, no saving is taking place.


	instant_death (bool) – If active, the first mistake will end the game.


	target_wpm (int or None) – The desired speed to be displayed as a guide.













	
mltype.interactive.main_replay(replay_file, force_perfect, overwrite, instant_death, target_wpm)

	Run main curses loop with a replay.


	Parameters

	force_perfect (bool) – If True, then one cannot finish typing before all characters
are typed without any mistakes.






	overwritebool
	If True, the replay file will be overwritten in case
we are faster than it.



	replay_filestr or pathlib.Path
	Typed text in this file from some previous game.



	instant_deathbool
	If active, the first mistake will end the game.



	target_wpmNone or int
	The desired speed to be shown as guide.










	
mltype.interactive.run_loop(stdscr, text, force_perfect=True, replay_tt=None, instant_death=False, target_wpm=None)

	Run curses loop - actual implementation.








mltype.ml module

Machine learning utilities.


	
class mltype.ml.LanguageDataset(X, y, vocabulary, transform=None)

	Bases: torch.utils.data.dataset.Dataset

Language dataset.

All the inputs of this class should be generated via
create_data_language.


	Parameters

	
	X (np.ndarray) – Array of shape (n_samples, window_size) of dtype np.int8.
It represents the features.


	y (np.ndarray) – Array of shape (n_samples,) of dtype np.int8.
It represents the targets


	vocabulary (list) – List of characters in the vocabulary.


	transform (callable or None) – Some callable that inputs X and y and returns some
modified instances of them.









	
ohv_matrix

	Matrix of shape (vocab_size + 1, vocab_size). The submatrix
ohv_matrix[:vocab_size, :] is an identity matrix and is used
for fast creation of one hot vectors. The last row of ohv_matrix
is a zero vector and is used for encoding out-of-vocabulary characters.


	Type

	np.ndarray














	
class mltype.ml.SingleCharacterLSTM(vocab_size, hidden_size=16, n_layers=1, dense_size=128)

	Bases: pytorch_lightning.core.lightning.LightningModule

Single character recurrent neural network.

Given some string of characters, we generate the probability distribution
of the next character.

Architecture starts with an LSTM (hidden_size, n_layers, vocab_size)
network and then we feed the last hidden state to a fully
connected network with one hidden layer (dense_size).


	Parameters

	
	vocab_size (int) – Size of the vocabulary. Necessary since we are encoding each
character as a one hot vector.


	hidden_size (int) – Hidden size of the recurrent cell.


	n_layers (int) – Number of layers in the recurrent network.


	dense_size (int) – Size of the single layer of the feed forward network.









	
rnn_layer

	The recurrent network layer.


	Type

	torch.nn.Module










	
linear_layer1

	Linear layer connecting the last hidden state and the single
layer of the feedforward network.


	Type

	torch.nn.Module










	
linear_layer2

	Linear layer connecting the single layer of the feedforward network
with the output (of size vocabulary_size).


	Type

	torch.nn.Module










	
activation_layer

	Softmax layer making sure we get a probability distribution.


	Type

	torch.nn.Module










	
configure_optimizers()

	Configure optimizers.

Necessary for pytorch-lightning.


	Returns

	optimizer – The chosen optimizer.



	Return type

	Optimizer










	
forward(x, h=None, c=None)

	Perform forward pass.


	Parameters

	
	x (torch.Tensor) – Input features of shape (batch_size, window_size, vocab_size).
Note that the provided vocab_size needs to be equal to the one
provided in the constructor. The remaining dimensions
(batch_size and window_size) can be any positive integers.


	h (torch.Tensor) – Hidden states of shape (n_layers, batch_size, hidden_size). Note
that if provided we enter a continuation mode. In this case
to generate the prediction we just use the last character and the
hidden state for the prediction. Note that in this case
we enforce that x.shape=(batch_size, 1, vocab_size).


	c (torch.Tensor) – Hidden states of shape (n_layers, batch_size, hidden_size). Note
that if provided we enter a continuation mode. In this case
to generate the prediction we just use the last character and the
hidden state for the prediction. Note that in this case
we enforce that x.shape=(batch_size, 1, vocab_size).






	Returns

	
	probs (torch.Tensor) – Tensor of shape (batch_size, vocab_size). For each sample
it represents the probability distribution over all characters
in the vocabulary.


	h_n, c_n (torch.Tensor) – New Hidden states of shape (n_layers, batch_size, hidden_size).















	
training: bool

	




	
training_step(batch, batch_idx)

	Run training step.

Necessary for pytorch-lightning.


	Parameters

	
	batch (tuple) – Batch of training samples. The exact definition depends
on the dataloader.


	batch_idx (idx) – Index of the batch.






	Returns

	loss – Tensor scalar representing the mean binary cross entropy
over the batch.



	Return type

	torch.Tensor










	
validation_epoch_end(outputs)

	Run epoch end validation logic.

We sample 5 times 100 characters from the current network. We
then print to the standard output.


	Parameters

	outputs (list) – List of batches that were collected over the validation
set with validation_step.










	
validation_step(batch, batch_idx)

	Run validation step.

Optional for pytorch-lightning.


	Parameters

	batch (tuple) – Batch of validation samples. The exact definition depends
on the dataloader.






	batch_idxidx
	Index of the batch.






	Returns

	vocabulary – Vocabulary in order to have access in
validation_epoch_end.



	Return type

	list














	
mltype.ml.create_data_language(text, vocabulary, window_size=2, fill_strategy='zeros', verbose=False)

	Create a supervised dataset for the characte/-lever language model.


	Parameters

	
	text (str) – Some text.


	vocabulary (list) – Unique list of supported characters. Their corresponding indices
are going to be used for the one hot encoding.


	window_size (int) – The number of previous characters to condition on.


	fill_strategy (str, {"skip", "zeros"}) – Strategy for handling initial characters and unknown characters.


	verbose (bool) – If True, progress bar is showed.






	Returns

	
	X (np.ndarray) – Features array of shape (len(text), window_size) if
fill_strategy=zeros, otherwise it might be shorter. The dtype is
np.int8. If applicable, the integer (len(vocabulary)) represnts
a zero vector (out of vocabulary token).


	y (np.ndarray) – Targets array of shape (len(text),) if fill_strategy=zeros,
otherwise it might be shorter. The dtype is np.int8.


	indices (np.ndarray) – For each sample an index of the character we are trying to predict.
Note that for fill_strategy=”zeros” it is going to be
np.arange(len(text)). However, for different strategies might
have gaps. It helps us to keep track of the sample - character
correspondence.















	
mltype.ml.load_model(path)

	Load serialized model and vocabulary.


	Parameters

	path (pathlib.Path) – Path to where the file lies. This file was created by
save_model method.



	Returns

	
	model_inst (SingleCharacterLSTM) – Instance of the model. Note that all of its parameters
will be lying on a CPU.


	vocabulary (list) – Corresponding vocabulary.















	
mltype.ml.run_train(texts, name, max_epochs=10, window_size=50, batch_size=32, vocab_size=None, fill_strategy='skip', illegal_chars='', train_test_split=0.5, hidden_size=32, dense_size=32, n_layers=1, checkpoint_path=None, output_path=None, use_mlflow=True, early_stopping=True, gpus=None)

	Run the training loop.

Note that the parameters are also explained in the cli of mlt train.


	Parameters

	
	texts (list) – List of str representing all texts we would like to train on.


	name (str) – Name of the model. This name is only used when we save the model -
it is not hardcoded anywhere in the serialization.


	max_epochs (int) – Maximum number of epochs. Note that the number of actual epochs
can be lower if we activate the early_stopping flag.


	window_size (int) – Number of previous characters to consider when predicting the next
character. The higher the number the longer the memory we are
enforcing. Howerever, at the same time, the training becomes slower.


	batch_size (int) – Number of samples in one batch.


	vocab_size (int) – Maximum number of characters to be put in the vocabulary. Note that
one can explicityly exclude characters via illegal_chars. The higher
this number the bigger the feature vectors are and the slower the
training.


	fill_strategy (str, {"zeros", "skip"}) – Determines how to deal with out of vocabulary characters. When
“zeros” then we simply encode them as zero vectors. If “skip”, we
skip a given sample if any of the characters in the window or the
predicted character are not in the vocabulary.


	illegal_chars (str or None) – If specified, then each character of the str represents a forbidden
character that we do not put in the vocabulary.


	train_test_split (float) – Float in the range (0, 1) representing the percentage of the training
set with respect to the entire dataset.


	hidden_size (int) – Hidden size of LSTM cells (equal in all layers).


	dense_size (int) – Size of the dense layer that is bridging the hidden state outputted
by the LSTM and the final output probabilities over the vocabulary.


	n_layers (int) – Number of layers inside of the LSTM.


	checkpoint_path (None or pathlib.Path or str) – If specified, it is pointing to a checkpoint file (generated
by Pytorch-lightning). This file does not contain the vocabulary.
It can be used to continue the training.


	output_path (None or pathlib.Path or str) – If specified, it is an alternative output folder when the trained
models and logging information will be stored. If not specified
the output folder is by default set to ~/.mltype.


	use_mlflow (bool) – If active, than we use mlflow for logging of training and validation
loss. Additionally, at the end of each epoch we generate a few
sample texts to demonstrate how good/bad the current network is.


	early_stopping (bool) – If True, then we monitor the validation loss and if it does not
improve for a certain number of epochs then we stop the traning.


	gpus (int or None) – If None or 0, no GPUs are used (only CPUs). Otherwise, it represents
the number of GPUs to be used (using the data parallelization
strategy).













	
mltype.ml.sample_char(network, vocabulary, h=None, c=None, previous_chars=None, random_state=None, top_k=None, device=None)

	Sample a character given network probability prediciton (with a state).


	Parameters

	
	network (torch.nn.Module) – Trained neural network that outputs a probability distribution over
vocabulary.


	vocabulary (list) – List of unique characters.


	h (torch.Tensor) – Hidden states with shape (n_layers, batch_size=1, hidden_size).
Note that if both of them are None we are at the very first character.


	c (torch.Tensor) – Hidden states with shape (n_layers, batch_size=1, hidden_size).
Note that if both of them are None we are at the very first character.


	previous_chars (None or str) – Previous charaters. None or and empty string if we are at the very
first character.


	random_state (None or int) – Guarantees reproducibility.


	top_k (None or int) – If specified, we only sample from the top k most probably characters.
Otherwise all of them.


	device (None or torch.device) – By default torch.device(“cpu”).






	Returns

	ch – A character from the vocabulary.



	Return type

	str










	
mltype.ml.sample_text(n_chars, network, vocabulary, initial_text=None, random_state=None, top_k=None, verbose=False, device=None)

	Sample text by unrolling character by character predictions.

Note that keep the pass hidden states with each character prediciton
and there is not need to specify a window.


	Parameters

	
	n_chars (int) – Number of characters to sample.


	network (torch.nn.Module) – Pretrained character level network.


	vocabulary (list) – List of unique characters.


	initial_text (None or str) – If specified, initial text to condition based on.


	random_state (None or int) – Allows reproducibility.


	top_k (None or int) – If specified, we only sample from the top k most probable
characters. Otherwise all of them.


	verbose (bool) – Controls verbosity.


	device (None or torch.device) – By default torch.device(“cpu”).






	Returns

	text – Generated text of length n_chars + len(initial_text).



	Return type

	str










	
mltype.ml.save_model(model, vocabulary, path)

	Serialize a model.

Note that we require that the model has a property hparams that
we can unpack into the constructor of the class and get the same
network architecture. This is automatically the case if we subclass
from pl.LightningModule.


	Parameters

	
	model (SingleCharacterLSTM) – Torch model to be saved. Additionally, we require that it has
the hparams property that contains all necessary hyperparameters
to instantiate the model.


	vocabulary (list) – The corresponding vocabulary.


	path (pathlib.Path) – Path to the file that will whole the serialized object.













	
mltype.ml.text2features(text, vocabulary)

	Create per character one hot encoding.

Note that we employ the zeros strategy out of vocabulary characters.


	Parameters

	
	text (str) – Text.


	vocabulary (list) – Vocabulary to be used for the endcoding.






	Returns

	res – Array of shape (len(text), len(vocabulary) of boolean dtype.
Each row represents the one hot encoding of the respective character.
Note that out of vocabulary characters are encoding with a zero
vector.



	Return type

	np.ndarray












mltype.stats module

Computation of various statistics.


	
mltype.stats.times_per_character(tt)

	Compute per caracter analysis.


	Parameters

	tt (TypedText) – Instance of the TypedText.



	Returns

	stats – Keys are characters and values are list of
time intervals it took to write the last correct
instance.



	Return type

	dict












mltype.utils module

Collection of utility functions.


	
mltype.utils.get_cache_dir(predefined_path=None)

	Get the cache directory path and potentially create it.

If no predefined path provided, we simply take ~/.mltype.
Note that if one changes the os.environ[“home”] dynamically
it will influence the output of this function. this is done
on purpose to simplify testing.


	Parameters

	predefined_path (None or pathlib.Path or str) – If provided, we just return the same path. We potentially
create the directory if it does not exist. If it is not
provided we use $HOME/.mltype.



	Returns

	path – Path to where the caching directory is located.



	Return type

	pathlib.Path










	
mltype.utils.get_mlflow_artifacts_path(client, run_id)

	Get path to where the artifacts are located.

The benefit is that we can log any file into it and even
create a custom folder hierarachy.


	Parameters

	
	client (mlflow.tracking.MlflowClient) – Client.


	run_id (str) – Unique identifier of a run.






	Returns

	path – Path to the root folder of artifacts.



	Return type

	pathlib.Path










	
mltype.utils.print_section(name, fill_char='=', drop_end=False, add_ts=True)

	Print nice section blocks.


	Parameters

	
	name (str) – Name of the section.


	fill_char (str) – Character to be used for filling the line.


	drop_end (bool) – If True, the ending line is not printed.


	add_ts (bool) – We add a time step to the heading.















Module contents

Python package.







            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       mltype	
       

     
       	
       	   
       mltype.base	
       

     
       	
       	   
       mltype.cli	
       

     
       	
       	   
       mltype.data	
       

     
       	
       	   
       mltype.interactive	
       

     
       	
       	   
       mltype.ml	
       

     
       	
       	   
       mltype.stats	
       

     
       	
       	   
       mltype.utils	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 


A


  	
      	Action (class in mltype.base)


      	actions (mltype.base.TypedText attribute)


  

  	
      	activation_layer (mltype.ml.SingleCharacterLSTM attribute)


      	addch() (mltype.interactive.Pen method)


      	addstr() (mltype.interactive.Pen method)


  





C


  	
      	check_finished() (mltype.base.TypedText method)


      	compute_accuracy() (mltype.base.TypedText method)


      	compute_cpm() (mltype.base.TypedText method)


      	compute_wpm() (mltype.base.TypedText method)


  

  	
      	configure_optimizers() (mltype.ml.SingleCharacterLSTM method)


      	create_data_language() (in module mltype.ml)


      	current_ix (mltype.interactive.TypedTextWriter attribute)


      	Cursor (class in mltype.interactive)


  





E


  	
      	elapsed_seconds() (mltype.base.TypedText property)


  

  	
      	end_ts (mltype.base.TypedText attribute)


  





F


  	
      	file2text() (in module mltype.data)


  

  	
      	folder2text() (in module mltype.data)


      	forward() (mltype.ml.SingleCharacterLSTM method)


  





G


  	
      	get_cache_dir() (in module mltype.utils)


  

  	
      	get_mlflow_artifacts_path() (in module mltype.utils)


  





L


  	
      	LanguageDataset (class in mltype.ml)


      	linear_layer1 (mltype.ml.SingleCharacterLSTM attribute)


  

  	
      	linear_layer2 (mltype.ml.SingleCharacterLSTM attribute)


      	load() (mltype.base.TypedText class method)


      	load_model() (in module mltype.ml)


  





M


  	
      	main_basic() (in module mltype.interactive)


      	main_replay() (in module mltype.interactive)


      	
    mltype

      
        	module


      


      	
    mltype.base

      
        	module


      


      	
    mltype.cli

      
        	module


      


      	
    mltype.data

      
        	module


      


      	
    mltype.interactive

      
        	module


      


      	
    mltype.ml

      
        	module


      


  

  	
      	
    mltype.stats

      
        	module


      


      	
    mltype.utils

      
        	module


      


      	
    module

      
        	mltype


        	mltype.base


        	mltype.cli


        	mltype.data


        	mltype.interactive


        	mltype.ml


        	mltype.stats


        	mltype.utils


      


      	move_abs() (mltype.interactive.Cursor method)


  





N


  	
      	n_actions() (mltype.base.TypedText property)


      	n_backspace_actions() (mltype.base.TypedText property)


      	n_backspace_characters() (mltype.base.TypedText property)


  

  	
      	n_characters() (mltype.base.TypedText property)


      	n_correct_characters() (mltype.base.TypedText property)


      	n_untouched_characters() (mltype.base.TypedText property)


      	n_wrong_characters() (mltype.base.TypedText property)


  





O


  	
      	ohv_matrix (mltype.ml.LanguageDataset attribute)


  





P


  	
      	Pen (class in mltype.interactive)


      	pens (mltype.interactive.TypedTextWriter attribute)


  

  	
      	print_section() (in module mltype.utils)


      	process_character() (mltype.interactive.TypedTextWriter method)


  





R


  	
      	render() (mltype.interactive.TypedTextWriter method)


      	replay_elapsed (mltype.interactive.TypedTextWriter attribute)


      	replay_uactions (mltype.interactive.TypedTextWriter attribute)


  

  	
      	rnn_layer (mltype.ml.SingleCharacterLSTM attribute)


      	run_loop() (in module mltype.interactive)


      	run_train() (in module mltype.ml)


  





S


  	
      	sample_char() (in module mltype.ml)


      	sample_text() (in module mltype.ml)


      	save() (mltype.base.TypedText method)


  

  	
      	save_model() (in module mltype.ml)


      	screen_status() (mltype.interactive.TypedTextWriter property)


      	SingleCharacterLSTM (class in mltype.ml)


      	start_ts (mltype.base.TypedText attribute)


  





T


  	
      	target_wpm (mltype.interactive.TypedTextWriter attribute)


      	text2features() (in module mltype.ml)


      	times_per_character() (in module mltype.stats)


      	training (mltype.ml.SingleCharacterLSTM attribute)


  

  	
      	training_step() (mltype.ml.SingleCharacterLSTM method)


      	type_character() (mltype.base.TypedText method)


      	TypedText (class in mltype.base)


      	TypedTextWriter (class in mltype.interactive)


  





U


  	
      	unroll_actions() (mltype.base.TypedText method)


  





V


  	
      	validation_epoch_end() (mltype.ml.SingleCharacterLSTM method)


  

  	
      	validation_step() (mltype.ml.SingleCharacterLSTM method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          mltype
        


        		
          Installation
          
            		
              Extra dependencies
            


          


        


        		
          Command Line Interface
          
            		
              file
              
                		
                  Arguments
                


                		
                  Options
                


                		
                  Examples
                


              


            


            		
              ls
              
                		
                  Examples
                


              


            


            		
              random
              
                		
                  Arguments
                


                		
                  Options
                


                		
                  Examples
                


              


            


            		
              raw
              
                		
                  Arguments
                


                		
                  Options
                


                		
                  Examples
                


              


            


            		
              replay
              
                		
                  Arguments
                


                		
                  Options
                


                		
                  Examples
                


              


            


            		
              sample
              
                		
                  Arguments
                


                		
                  Options
                


                		
                  Examples
                


              


            


            		
              train
              
                		
                  Arguments
                


                		
                  Options
                


                		
                  Examples
                


              


            


          


        


        		
          Examples
          
            		
              Competing against yourself
            


          


        


        		
          Changelog
          
            		
              v0.1.1
            


            		
              v0.1
            


          


        


        		
          mltype package
          
            		
              Submodules
            


            		
              mltype.base module
            


            		
              mltype.cli module
            


            		
              mltype.data module
            


            		
              mltype.interactive module
            


            		
              mltype.ml module
            


            		
              mltype.stats module
            


            		
              mltype.utils module
            


            		
              Module contents
            


          


        


      


    
  

_images/c66e189c3e073224724314e6105de3603c88a973.png
mltypE





_static/minus.png





_static/plus.png





_static/file.png





